Nitinol: un material con memoria de forma

El Nitinol es una aleación de níquel y titanio que tiene memoria de forma. Si lo deformamos plásticamente y posteriormente lo calentamos recuperará su forma original. Mediante calentamiento bajo tensión es posible darle una nueva forma.

Un material con memoria de forma puede recuperar su forma después de deformarlo de una manera aparentemente irreversible. En los años treinta del pasado siglo se descubrieron las primeras aleaciones con este comportamiento y veinte años más tarde, en los cincuenta, se encontró una explicación a lo que sucedía

Sus aplicaciones son muy diversas y en ámbitos muy dispares, por ej.: antenas para satélites que se transportan plegadas y llegado el momento se despliegan adoptando la forma predefinida, válvulas, en circuitos de seguridad, que se cierran o abren en función de la temperatura, piezas deformadas de objetos sometidos a tensión, que recuperan su forma mediante el paso de una corriente eléctrica.

El Nitinol

Uno de los materiales más populares que presenta memoria de forma es una aleación de Ni y Ti conocida como Nitinol. Su nombre es un acrónimo que incluye además de los dos metales constituyentes, el laboratorio de armamento de la armada estadounidense donde se descubrió :
Nickel Titanium Naval Ordnance Laboratory.
Su descubridor fué William J. Buehler un ingeniero metalúrgico que trabajaba en el Naval Ordnace Laboratory  preparando aleaciones para el cono delantero de los misiles Polaris.

Los materiales que buscaba debían soportar las drásticas condiciones que se producen en la reentrada de los misiles en la atmósfera terrestre. En 1959 centró su búsqueda en una aleación de níquel y titanio en proporciones equimolares a la que donomino Nitinol. Descubrió accidentalmente, al caérsele una muestra, que dependiendo de la temperatura de la muestra, el sonido que producía al chocar con el suelo del laboratorio era diferente. Esto sugería un cambio en la estructura de la aleación en función de la temperatura. En los primeros meses de 1960 Buehler probaba la resistencia a la fatiga de la aleación. Usando tiras de Nitinol las doblaba en una especie de acordeón y lo estiraba y doblaba a temperatura ambiente sin que se rompiera. En 1961 Buehler no pudiendo asistir a una de las reuniones, en las que se analizaba la marcha de los proyectos en desarrollo, envío a uno de sus asistentes Raymond C.Wiley a la misma. En la reunión Wiley mostró la pieza en forma de acordeón, que fue pasando de mano en mano entre los asistentes, mientras comprobaban sus propiedades mecánicas. Uno de los presentes David S. Muzzey, fumador de pipa, aplicó calor a la pieza usando su mechero. Ante la mirada de los asombrados asistentes, la muestra de Nitinol se estiró adoptando un forma lineal y exhibiendo de esta manera su sorprendente memoria de forma.

En el vídeo que sigue, un alambre de Nitinol deformado tras ser enrollarlo en una pieza cilíndrica, recupera su forma lineal al calentarlo.

¿Por qué tiene memoria de forma?

Continuar leyendo “Nitinol: un material con memoria de forma”

El ácido sulfúrico deshidrata

Lo que vemos

Al añadir ácido sulfúrico a un tubo de ensayo que contiene sacarosa (azúcar de mesa), se observa como el azúcar se deshidrata convirtiéndose en una masa esponjosa de carbón que sale del tubo adoptando la forma de  una serpiente negra.

La química

De una forma simplificada se puede considerar que lo que sucede es lo siguiente:

Continuar leyendo “El ácido sulfúrico deshidrata”

Reacción espectacular

Lo que vemos

Si vertemos glicerina sobre permanganato potásico, al cabo de unos segundos se produce una espectacular reacción entre ambos.

La química

El permanganato potásico (KMnO4) oxida a la glicerina, 1,2,3-propanotriol (CH2OH-CHOH-CH2OH) a dióxido de carbono y agua que se transforma en vapor haciendo uso de parte del calor liberado. El permanganato se reduce Mn4+.

La reacción es exotérmica, libera calor. Al principio es lenta pero a medida que la temperatura aumenta, también lo hace la velocidad de reacción.
Continuar leyendo “Reacción espectacular”

La órbita de la Luna

La Luna
La Luna

La Luna acompaña a la Tierra en su viaje por el espacio. Juntas orbitan alrededor del Sol como el resto de los planetas. En la tabla siguiente se reflejan algunos datos de masas y distancias del sistema Sol-Tierra-Luna, así como algunas relaciones entre ellos.

Relaciones
Distancia Tierra-Sol (km) 1,5 E+08 389
Distancia Tierra-Luna (km) 3,8 E+05 1
 
Radio (km) Sol 7,0 E+05 401
Tierra 6,4 E+03 4
Luna 1,7 E+03 1
 
Masa (kg) Sol 2,0 E+30 2,7 E+07
Tierra 6,0 E+24 81
Luna 7,3 E+22 1

Un reto

Antes de continuar te propongo un pequeño reto: resolver los  siguientes ejercicios.

Continuar leyendo “La órbita de la Luna”

La pila de limón

[Ir directamente a la fabricación de la pila]

Índice

  1. Introducción
  2. Fabricando una pila en casa
    1. ¿Qué se necesita?
    2. A tener en cuenta
    3. Montando la pila
      1. Hay que asegurarse de que :
      2. Algo se enciende
      3. Uniendo dos pilas
      4. Si no funciona:
      5. ¿Donde está el limón?
  3. La explicación [nivel 1]
  4. La explicación [nivel 2]
    1. ¿Qué es una reacción química?
    2. En algunas reacciones se intercambian electrones
    3. El clavo y el vinagre contienen los reactivos de la reacción
    4. ¿Qué sucede en la pila?
  5. Algunos comentarios
    1. Sobre el ladrón de julios
    2. ¿Qué sucede en la pila?
    3. Cómo aumentar la corriente de la pila
    4. Como aumentar la tensión de la pila
    5. La pila de limón y los errores conceptuales
      1. Errores conceptuales habituales en la explicación del funcionamiento de la pila
      2. Un ejercicio
  6. Referencias bibliográficas
    1. La pila de limón, construcción, funcionamiento y variantes
    2. Sobre errores conceptuales en electroquímica

Introducción

Hace unos días al preparar material para un taller de electricidad y magnetismo en el MUNCYT, destinado a chavales entre 11 y 14 años, comprobé que la fabricación de una pila casera con limón y sus variantes es una actividad muy popular. Una búsqueda en Google (Por ejemplo “pila de limón” o “lemon battery”) devuelve miles de páginas y vídeos en los que se nos explica como construir una pila con materiales que se encuentras en muchas casas.

En esta entrada hay una versión de la actividad usada en el taller, una explicación de lo que sucede contada a alumnado de secundaria en dos niveles de complejidad y algunos comentarios que pueden ser de interés para alumnado de bachillerato que esté estudiando electroquímica o cualquier persona interesada en preparar la actividad.

Continuar leyendo “La pila de limón”

Física y montañas rusas

montaña rusa
Montaña rusa en Port Avenntura

Las montañas rusas son unos objetos estupendos para estudiar física, especialmente las leyes de la mecánica.

La conservación de la energía

Inicialmente se arrastra el vagón, que carece de tracción propia, hasta la parte más elevada de la montaña rusa. Esta separación de la Tierra produce un aumento de la energía potencial gravitatoria del vagón. Al dejarlo en libertad, el vagón desciende aumentando progresivamente su velocidad. En términos energéticos su energía potencial gravitatoria se va transformando en energía cinética, la energía asociada al movimiento de los cuerpos, salvo una pequeña parte que se transforma en calor debido al rozamiento que ejercen el aire y las vías. En los tramos ascendentes, sucede lo contrario la velocidad disminuye a medida que el vagón gana altura aumentando por tanto la energía potencial gravitatoria a costa de la energía cinética. Una pequeña parte de esa energía cinética de nuevo se transforma en calor debido al rozamiento.
Continuar leyendo “Física y montañas rusas”

Sodio un metal poco convencional

El 5 de diciembre de 1987 el buque Casón, debido al temporal, embarrancó en la costa gallega  cerca de Fisterra.
Transportaba 1100 toneladas de productos muy peligrosos por su toxicidad o inflamabilidad. Entre estos últimos se encontraba el sodio que al entrar en contacto con el agua de mar dio lugar a violentas explosiones.

En el vídeo se puede ver lo que sucede cuando el sodio metálico entra en contacto con agua. Los  barcos de papel van cargados con unos pequeños trozos del metal. En la segunda parte del vídeo se sitúan unos fragmentos de sodio en el fondo de la pileta.

El sodio, Na, es un metal alcalino. Aunque de color y aspecto metálico, muchas de sus propiedades no encajan en la idea que normalmente tenemos de como debería comportase un metal. Su densidad es menor que la del agua por lo que flota en ella. Es suficientemente blando como para cortarlo con una navaja y lo que aquí nos importa, reacciona violentamente con el agua ya que libera hidrógeno y calor suficiente para que este arda.

2 Na(s) + 2H2O(l) –> 2NaOH(ac) + H2(g) + calor
2 H2(g) + O2(g) –> 2 H2O(l) + calor

Efecto Mpemba

¿Qué es el Efecto Mpemba?

Se llama Efecto Mpemba al fenómeno consistente en que bajo ciertas circunstancias el agua caliente se congela antes que el agua fría.

Un poco de historia

Aristóteles(384-322 a.C.) en su obra “Meteorológicos” ya hace referencia a este efecto, así como Roger Bacon(c. 1214-1294),  Francis Bacon(1561-1626) en su Novum Organum o René Descartes(1596-1650) en su Discurso del Método.

Erasto Mpemba

El efecto, un poco olvidado, volvió a primer plano en los años 60 del siglo pasado de la mano de Erasto Mpemba, del que recibe su nombre. Mientras estudiaba en un colegio de secundaria en Tanzania sus compañeros y él hacían helado en una nevera del colegio compitiendo por el poco espacio existente dentro de la misma. En una ocasión para no quedarse sin sitio metió el líquido recién hervido en la nevera en lugar de dejarlo enfriar previamente como era lo habitual. Al abrir la nevera al cabo de hora y media observó para su sorpresa que su helado estaba congelado mientras que el de un compañero, que  había introducido la misma cantidad, al mismo tiempo, pero a una temperatura mucho más baja, todavía estaba líquido.

Le preguntó a su profesor de física cual podía ser la explicación, recibiendo la respuesta “Te has confundido eso no puede pasar”.

Pasado el tiempo cambió de colegio y en el laboratorio de biología repitió el experimento con parecidos resultados.

En esa época Denis Osborne, jefe del Departamento de Física de la Universidad de Dar es Salam, dió una conferencia en el colegio y en la ronda final de preguntas Erasto le preguntó: “Si coges dos vasos de precipitados con la misma cantidad de agua, uno a 35ºC y el otro a 100ºC, y los pones en un congelador, el que estaba a 100 ºC se congela primero. ¿Por qué?”. Osborne le contestó que lo comprobaría y le animó a que siguiese estudiándolo.

De vuelta a su universidad Osborne  encargó a un técnico de laboratorio que hiciese la experiencia. El ayudante le informó una vez realizado el experimento que efectivamente el agua caliente se había congelado primero pero que “Continuaremos repitiendo el experimento hasta que obtengamos el resultado correcto”. Posteriores experimentos confirmaron los resultados de Erasto.

Mpemba y Osborne en 1969 publicaron un artículo de forma conjunta en la revista Physics Education en el que se recoge todo lo anterior:

En el video siguiente podemos ver a Osborne y  Mpemba  recordando lo sucedido :

Premio de la Royal Society of Chemistry

En 2012 la RSC ofreció un premio de 1000 libras a la persona o grupo que ofreciese la explicación más creativa del efecto Mpemba. Se recibieron más de 22 000 participaciones de todo el mundo. El ganador fue Nikola Bregovic, de la Universidad de Zagreb. En la web de la RSC puede leerse su trabajo, el de los finalistas y otros aspectos interesantes relacionados con el  premio y el efecto Mpemba.

Explicación del efecto

A día de hoy no hay todavía un acuerdo sobre la explicación del efecto. Dentro de las  causas posibles se han mencionado:

Evaporación

El agua caliente se evapora más de prisa que el agua fría, como consecuencia hay menos agua que congelar al llegar a la temperatura de fusión.

Gases disueltos

El agua fría tiene una mayor cantidad de gases disueltos que el agua caliente. Las moléculas de los gases en disolución incrementan la viscosidad del agua fría  dificultando las corrientes de convección. La presencia de gases disueltos también produce un descenso del punto de fusión.

Aumento de la convección

En el agua caliente se produce una mayor diferencia de temperatura entre el centro del recipiente donde el líquido se mantiene caliente y la zona en contacto con las paredes en la que se enfría más deprisa. Esta diferencia de temperatura favorece las corrientes de convección.

El baño del osito de gominola

El baño

Un osito de gominola, que está constituido básicamente por azúcar común(sacarosa),  arde violentamente cuando lo introducimos en un tubo de ensayo que contiene clorato potásico fundido.

La química

El clorato potásico, KClO3, es un agente oxidante o comburente ya que cuando se calienta produce oxígeno. Esto quiere decir que facilita el que una substancia combustible arda o, dicho en términos químicos se oxide.

Al dejar caer el osito en el tubo de ensayo que contiene el clorato potásico fundido se produce una violenta reacción de combustión ya que la energía liberada en el proceso aumenta el poder oxidante del KClO3 al conseguir que este libere oxígeno más rápidamente.

Las reacciones químicas que tienen lugar son las siguientes:

2KClO3(l) + Energía→ 2KCl(s) + 3O2(g)

C12H22O11(s) + 12O2(g) → 12CO2(g) + 11H2O(l) + Energía

Una variante de está reacción la puedes ver en la entrada: Aliento de dragón

A tener en cuenta

Esta experiencia es  peligrosa y solo la debe intentar un adulto con experiencia en el manejo de substancias peligrosas.

Reacción Old Nassau

Una reacción reloj es aquella en la que al cabo de un cierto tiempo de mezclar los reactivos aparece súbitamente un producto.

En el vídeo a continuación podemos ver la reacción Old Nassau, tambien conocida como la reacción de Halloween. Es una reacción reloj en la que una disolución incolora se vuelve primero naranja y luego negra.

Un poco de historia

El nombre se debe a que fue descubierta por dos estudiantes de la Universidad de Princeton, cuyos colores son el naranja y el negro, y en la que hay un edificio histórico, Nassau Hall, que se le conoce coloquialmente con el nombre de Old Nassau, en el que en 1796 comenzó a funcionar uno de los primeros laboratorios para estudiantes universitarios de los que se tiene noticia.

Un poco de química

Los líquidos que contienen los tres vasos de precipitados que se ven en el vídeo son disoluciones acuosas de:

  1. metabisulfito sódico con un poco almidón.
  2. cloruro de mercurio(II)
  3. yodato potásico

El color naranja se produce cuando se dan las condiciones para que precipite yoduro de mercurio(II) de color naranja. Cuando se acaba el catión mercurio(II) si todavía hay aniones yoduro y yodato, reaccionan para dar yodo que con almidon produce un complejo de color azul oscuro casi negro.

Más información

Un análisis más detallado y los detalles concretos de como llevarla a cabo se pueden encontrar en :

  • Lister, Ted. 1995. Classic Chemistry Demonstrations.  (London: The Royal Society of Chemistry)

Editado en español como:

  • Lister, Ted. 2002. Experimentos de Química clásica.  (Madrid: Síntesis)

La Nuffield Foundation en colaboración con la Royal Society of Chemistry mantiene un recurso denominado Practical Chemistry en el que se encuentran los experimentos del libro mencionado incluyendo la reacción reloj Old Nassau.