Historias de matemáticos (II)

Anécdotas de Matemáticos celebres en relación con la Hipótesis de Riemann

Los propósitos de año nuevo de Hardy

G. H. Hardy (1877 – 1947) dedicó muchos de sus esfuerzos profesionales a la Hipótesis de Riemann (ver entrada anterior) tanto en solitario como en colaboraciónes con Littlewood o Ramanujan. No consiguió demostrarla pero si consiguió notables resultados como el demostrar que la función zeta tiene infinitos ceros no triviales cuya parte real es 1/2.

Se cuentan de Hardy algunas historias que muestran ese interés que durante toda su vida tuvo en la Hipótesis de Riemann. (ver Historias de matemáticos (I))

Godfrey Harold Hardy
Godfrey Harold Hardy

La necrológica que publica la revista Nature el 22 de mayo de 1948 en relación con su muerte recoge una lista de propósitos que éste había enviado a un amigo en una postal en los años 1920 con motivo del año nuevo:

  1. Demostrar la hipótesis de Riemann
  2. Hacer 211 sin estar eliminado en la cuarta entrada del último Test Match en el Oval
  3. Encontrar un argumento sobre la no existencia de Dios que convenciese al gran publico
  4. Ser el primer hombre en escalar el Monte Everest
  5. Ser proclamado el primer presidente de la USSR de Gran Bretaña y Alemania
  6. Asesinar a Mussolini

Obituaries. (1948, Mayo, 22). Prof. G.H. Hardy, F.R.S. Nature. Vol. 161. pag 798.

La Hipótesis de Riemann y el alumno de Hilbert

La hipótesis de Riemann junto con la conjetura de Goldbach constituyen el problema nº 8 de la famosa lista de 23 problemas que David Hilbert compiló para el Congreso Internacional de Matemáticos de 1900.

En la pag 130 de Mathematical Circles Squared Howard Ewes cuenta la siguiente anécdota sobre David Hilbert:

David Hilbert
David Hilbert

“Hilbert tenía un alumno que un día le presentó un trabajo en el que pretendía demostrar la Hipótesis de Riemann. Hilbert que estudio el trabajo de forma minuciosa quedo impresionado por la profundidad de los argumentos; aunque desafortunadamente  encontró un error que invalidaba la demostración. Al año siguiente el alumno falleció. Los padres pidieron a Hilbert que dijese unas palabras en el funeral. Mientras los parientes y amigos del alumno se encontraban bajo la lluvia en torno a su tumba, Hilbert se adelanto. Empezó por referirse a la tragedia que representaba que una persona tan joven y con tantas capacidades falleciese antes de tener la capacidad de desarrollarlas. Pero, continuó, “… a pesar de que la demostración de la Hipótesis de Riemann de este joven contenga un error, es posible que algún día la demostración de este famoso problema se produzca siguiendo el camino que el fallecido ha indicado. De hecho”, continuó con entusiasmo, de pie en la lluvia frente a la tumba del alumno, ” sea f(z) una función de variable compleja z. Consideremos …”

Eves, Howard. 2003. Mathematical Circles: Revisited Mathematical and Circles Squared, Volume II. Publicado por: American Mathematical Society

La definición de infierno de Paul Erdös

En el libro “Absolute Zero Gravity”, Betsy Devine y Joel E. Cohen recogen una curiosa definición de infierno que Paul Erdös le cuenta a Gus Simmons mientras pasean por unos acantilados en Nuevo México:
“Para un matemático, el infierno es caer por un acantilado como este y a medio camino darse cuenta finalmente de como demostrar la Hipótesis de Riemann”

Devine, Betsy, Cohen Joel E. 1992. Absolute Zero Gravity Science jokes, quotes and anecdotes. Publicado por Simon & Schuster.

La hipótesis de Riemann

La hipótesis de Riemann es probablemente el problema no resuelto más importante que las matemáticas tienen en la actualidad.

Mañana, lunes 24 de septiembre de 2018, Michael Atiyah, renombrado matemático británico acreedor de múltiples distinciones entre las que está la Medalla Fields y el Premio Abel presenta una ponencia en el Heidelberg Laureate Forum 2018 en cuyo resumen se puede leer que incluye una prueba de la Hipótesis de Riemann

La mayoría de los matemáticos estarían de acuerdo en afirmar que La hipótesis de Riemann es probablemente el problema no resuelto más importante que las matemáticas tienen en la actualidad.

Bernhard Riemann

Bernhard Riemann (1826-1866) la incluyó en un trabajo de 8 páginas publicado en 1859 titulado, Sobre el número de primos menores que una cantidad dada. Este trabajo fue de gran influencia sobre muchos grandes matemáticos de las generaciones que le siguieron.

A día de hoy, más de 150 años después, la hipótesis sigue sin demostración. El Instituto Clay ha establecido un premio de un millón de dolares para la primera persona que consiga demostrarla.

¿Qué dice la hipótesis de Riemann?

A diferencia de otros enunciados de teoremas famosos como el último teorema de Fermat o el teorema de los cuatro colores, la hipótesis de Riemman tiene un enunciado que resulta críptico para los no matemáticos:

Todos los ceros no triviales de la función zeta tienen parte real igual a 1/2

¿Por qué es importante?

Además de tener una íntima relación con la forma en la que los números primos están distribuidos entre los enteros, la Hipótesis de Riemann está íntimamente relacionada con la naturaleza misma de la realidad física a través de la mecánica cuántica.

En lo que sigue intentaré dar un repaso a la historia de los esfuerzos realizados para comprender la naturaleza de los números primos para tratar de entender la génesis de la hipótesis de Riemann y su significado.

Números Primos

¿Qué es un número primo?

Los primos son los números enteros mayores que 1 que no tienen divisores positivos distintos de si mismos y la unidad. Los diez primeros primos son:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Se llaman números compuestos a los enteros mayores que 1 que no son primos. Así 6 es un número compuesto ya que es divisible por 2 y por 3.

¿Por que son importantes los números primos?

Haciendo una analogía química se puede decir que los números primos son los elementos a partir de los que se construyen el resto de los números enteros. Los números enteros mayores que 1 o son primos o se pueden descomponer, de una única forma, salvo el orden, en números primos. Por ejemplo, 180, que es un número compuesto, se puede expresar como producto de números primos solo así, 2·2·3·3·5. Este hecho, llamado el teorema fundamental de la aritmética, era conocido probablemente en tiempos de Euclides ya que en los Elementos se mencionan algunas proposiciones muy relacionadas con él; sin embargo, la primera demostración completa tardó más de veinte siglos, apareció en las Disquisitiones Arithmeticae, que Gauss publicó en 1801.

¿Cuántos números primos hay?

En los Elementos de Euclides aparece la primera demostración de que los números primos son infinitos. Euclides emplea un método conocido como reducción al absurdo:

Supongamos que los números primos no son infinitos. Por tanto existe uno que es el último, pu.

Multipliquemos todos ellos y al resultado sumémosle 1,

2 · 3 · 5 · . . .  · pu+ 1

Este número no es divisible entre ninguno de los primos ya que, la división siempre da de resto 1. De lo anterior se puede deducir que o es primo o hay un primo mayor que pu que lo divide. Esta conclusión entra en contradicción con la suposición inicial de que pu es el último primo. La conclusión lógica de lo anterior es que los números primos son infinitos.

La criba de Eratóstenes

Se debe a Eratóstenes (276aC, 194 aC) un método para obtener los primos que hay hasta un número dado. Una operación de este tipo se llama criba ya que la idea es cribar los números enteros para quedarnos con los primos. El procedimiento es como sigue:

  1. Escribir en una tabla todos los enteros entre 2 y el número dado.
  2. Elegir el primer número no marcado ni tachado. (El primero es el 2). Este número es primo ya que, como no está tachado, no es divisible por ninguno de los primos anteriores.
  3. Tachar todos los múltiplos del número elegido en el paso anterior que no estén ya tachados. (Inicialmente, al elegir el 2, se tachan 4, 6, 8,…. La siguiente vez serán 9, 15, 21, …)
  4. Repetir desde el paso 2
Criba de Eratóstenes.
Autor: Sebastian Koppehel. Licencia: CC BY-SA 3.0

¿Cómo están distribuidos los primos?

¿Como aparecen los números primos distribuidos entre los enteros? ¿Hay algún orden? Veamos algunos hechos relacionados con su distribución:

Postulado de Bertrand

En su forma más elegante aunque más débil establece que siempre hay al menos un primo, p, entre un número cualquiera, n, y su doble, 2n:

n < p < 2n

Debe su nombre a Joseph Bertrand que lo comprobó para números hasta 3 millones.  Chebyshev lo demostró en 1850.

El postulado de Bertrand implica que el primo n-esimo (el que hace el numero n de la lista) siempre aparece antes de 2n

Números compuestos consecutivos sin límite

Aunque de entrada puede resultar paradójico, es fácil demostrar que es posible encontrar una lista de números enteros consecutivos tan grande como se quiera que no contenga ningún primo.

Los siguientes n números consecutivos son todos compuestos:

(n + 1)! + 2, (n + 1)! + 3, (n + 1)! + 4, ···, (n + 1)! + n+1

ya que,

(n + 1)!, que se lee factorial de n + 1 y es una forma abreviada de escribir (n + 1)·n·(n – 1)·(n – 2) ··· 3 · 2 · 1, es divisible por todos los enteros 1, 2, 3, ··· n + 1. Por tanto en la lista anterior, de n números consecutivos, todos ellos son compuestos ya que el primero es divisible por 2, el segundo por 3, el tercero por 4 y así sucesivamente hasta el último, que es divisible por n+1.

La serie armónica

Ver entrada anterior

Producto de Euler

Euler definió la función zeta mediante la serie siguiente

\zeta (x)=1+{\frac {1}{2^{x}}}+{\frac {1}{3^{x}}}+{\frac {1}{4^{x}}}+{\frac {1}{5^{x}}}+\cdots \

x es un número real que solo puede tomar valores mayores que la unidad ya que para valores menores, la función no está definida pues la serie no tiene una suma finita. (El significado de serie, limite de una serie, suma de una serie y otros relacionados pueden verse en la entrada anterior: La serie armónica, que por otra parte es la serie que se obtiene cuando x en la función zeta toma el valor de 1).

leonhard euler
Leonhard Euler (1707-1783)

En Variae observationes circa series infinitas, trabajo publicado en 1737, Euler demostró la siguiente identidad, denominada producto de Euler,

\sum\limits_{n=1}^{\infty }{\frac {1}{n^{s}}}=\prod\limits_{p{\text{ primo}}}{\frac {1}{1-p^{-s}}} \

Si se desarrolla la parte derecha se obtiene la siguiente expresión:

\left (1-\frac{1}{2^s} \right ) \left (1-\frac{1}{3^s} \right ) \left (1-\frac{1}{5^s} \right ) \left (1-\frac{1}{7^s} \right )\cdots \

En este producto aparecen uno a uno todos los números primos.

Cuando s toma el valor 2 el producto tiene como límite el valor π²/6  y su inverso 6/π² representa la probabilidad de que dos enteros positivos, elegidos al azar, sean primos entre si. (Ver la entrada: ¿Qué tiene que ver el número pi con el número de supervivientes?)

El producto de Euler muestra la relación que existe entre la función zeta y los números primos. Su demostración es de una gran belleza por su simplicidad, siendo necesario únicamente para poder seguirla disponer de unos conocimientos básicos de álgebra.

A partir del producto de Euler es posible demostrar también la infinitud de los primos. Si substituimos s por 1, el termino de la izquierda representa la serie armónica, que como sabemos es divergente (Su suma no tiene límite). Esto implica que el termino de la derecha también tiene que crecer sin límite o lo que es equivalente: no hay un último primo.

El teorema de los números primos

A principios del siglo XIX Legendre, Gauss y Dirichlet entre otros estudiaron la frecuencia de aparición de los primos. Más concretamente, el número de primos menores o iguales que N, que habitualmente se representa por la función π(N). Observaron que a medida que N se hace grande el número de primos menores o iguales que N se aproxima a N/ln(N). (ln representa el logaritmo natural o neperiano) La afirmación anterior es equivalente a decir que el cociente entre ambas cantidades se aproxima a 1. En términos más matemáticos:

\lim_{N\to \infty}{\frac {\;\pi (N)\;}{\frac {N}{\ln(N)}}}=1 \

Este resultado se conoce como el teorema de los números primos

En la tabla siguiente se muestran algunos valores de π(N), N/ln(N) y su cociente que tiende a 1.

Nπ(N)N/ln(N)π(N)/(N/ln(N))
10440,92
10025221,15
10001681451,16
10000122910861,13
100000959286861,10
100000078498723821,08
100000006645796204211,07
100000000576145554286811,06
100000000050847534482549421,05
100000000004550525114342944821,05

Dos importantes consecuencias del teorema de los números primos son las siguientes:

  • La probabilidad de que N sea primo es aproximadamente igual a \frac {1}{ln(N)} \
  • El número primo que ocupa la posición N de la lista es aproximadamente Nln(N)

Aproximadamente en las afirmaciones anteriores significa que cuanto mayor sea N menor error tendrá la aproximación.

La hipótesis de Riemann

Fragmento de la primera página del trabajo de Riemann de 1859.
Toma como punto de partida el Producto de Euler que relaciona los primos con los enteros.

Como hemos visto un poco más arriba, el producto de Euler muestra la relación existente entre la función zeta y los números primos. Riemann lo utiliza como punto de partida en su trabajo de 1859 en el que aparece su hipótesis.

Riemann da un paso más que Euler. Basándose en  ciertos patrones que presenta la función zeta de Euler y utilizando una técnica matemática del análisis complejo denominada continuación analítica, extendió la definición de la función zeta de forma que se pudiese aplicar a los números complejos. Se dio cuenta de que podría demostrar el teorema de los número primos si era capaz de entender los ceros que presentaba la función zeta. O lo que es lo mismo, las soluciones de la ecuación

\zeta (z)=0 \

La función zeta de Riemann, la extensión de la función zeta de Euler, tiene como ceros todos los números enteros pares negativos : -2, -4, -6, …

Además de estos ceros, denominados ceros triviales, tiene multitud de ceros que son números complejos. Un número complejo se expresa de la forma a + bi. Tiene una parte real, a,  y una parte imaginaria, b, siendo i el número que al elevarlo al cuadrado es igual  -1, o lo que es lo mismo

i = \sqrt{-1} \

En el trabajo de 1859 mencionado al principio, Sobre el número de primos menores que una cantidad dada,  y haciendo uso de un profundo conocimiento de la función zeta, establece su hipótesis:

La parte real de todas los ceros no triviales de la función zeta es 1/2

Si fuese cierto, también lo sería el teorema de los números primos.

Hadamard y de la Vallée Poussin demostraron en 1896, de forma independiente el teorema de los números primos,  pero aunque usaron la función zeta de Riemann no demostraron su hipótesis.

Hoy se sabe que  la parte real de los ceros complejos de la función zeta se encuentra entre 0 y 1. Hardy, que le dedico muchos esfuerzos, consiguió demostrar en 1911 que hay infinitos ceros en los que la parte real es 1/2. (Ver la anécdota sobre Hardy y la hipótesis de Riemann). En la actualidad se conocen más de 1013 ceros no triviales de la función zeta y todos ellos tiene como parte real 1/2.

Para saber más

  • Darling David. 2004. The Universal Book of Mathematics. John Wiley & Sons, Inc.
  • Davis, Philip J. y Harsh, Reuben. 1984. The Riemann Hypothesis en Mathematics: People, Problems, Results, Volumen 2. Editado por Douglas M. Campbell y John C. Higgins.  Wadsworth International.
  • Derbyshire, John. 2003. Prime Obsession . Bernhard Riemann and the greatest unsolved problem in mathematics. Joseph Henry Press
  • Devlin, Keith. 1994. Mathematics. The Science of Patterns. Scientific American Library
  • Wells, David. 2005. Prime Numbers. John Wiley & Sons, Inc.

La serie armónica

¿Qué es una serie?

En matemáticas serie infinita o simplemente serie, es la suma de una sucesión infinita de términos, (a1, a2, a3, …),

{a}_{1} + {a}_{2} + {a}_{2} + \cdots \.

Se puede representar de forma alternativa usando el símbolo sumatorio

\sum\limits_{i=1}^{\infty}{{a}_{i}} \.

Aunque los términos pueden ser varios tipos de entidades matemáticas vamos a centrarnos en series cuyos términos sean números reales.

Suma de una serie

Está claro que el significado del término suma no puede ser el mismo que el que usamos por ejemplo al realizar la suma 2 + 2, ya que en una serie al ser el número de sumandos infinito nunca acabaríamos de sumar, al menos en un tiempo finito.  Esta idea de sumar los términos de una serie resultó problemática para matemáticos y filósofos durante muchos siglos como  puso de manifiesto Zenón de Elea con su famosa paradoja de Aquiles y la tortuga.
En el siglo XIX los matemáticos resolvieron el problema introduciendo el concepto de límite.

Para acercarnos a la idea de límite consideremos la serie

1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \.

Calculemos las sumas parciales de sus términos,
Si sumamos los 2 primeros,

1+\frac{1}{2} = \frac{3}{2} \.

Sumando los 3 primeros,

1+\frac{1}{2}+\frac{1}{4} = \frac{7}{4} \.

Sumando los 4 primeros,

1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8} = \frac{15}{8} \.

Se puede deducir fácilmente que la suma de los n primeros términos es

\frac{{2}^{n}-1}{{2}^{n-1}} \

que  podemos escribir

2\left({1-\frac{1}{{2}^{n}}}\right) \.

A medida que n se hace más grande, el segundo término de la resta, \frac{1}{{2}^{n}} \, se hace  más pequeño y consecuentemente, la suma se acerca a 2.
El que la diferencia entre la suma de los n primeros términos de la serie y 2 la podamos hacer tan pequeña como queramos sin mas que aumentar el valor de n, es la idea fundamental que está detrás de la definición de 2 como límite, o suma, de la serie.

Demostración visual: 1 + 1/2 + 1/4 + 1/8 + · · · = 2
Demostración visual: 1 + 1/2 + 1/4 + 1/8 + · · · = 2

Cuando esto sucede y existe un límite se dice que la serie es convergente. Si no existe un límite como por ejemplo en la serie

1+2+3+\cdots \

la serie se denomina divergente.

La serie armónica

la serie,

\sum\limits_{n=1}^{\infty}{\frac{1}{n}}=1+\frac{1}{2}+\frac{1}{3}+\cdots \

recibe el nombre de serie armónica y es el resultado de sumar los inversos de los números enteros. Su nombre deriva del concepto de sobretonos o armónicos en música. La frecuencia del tono fundamental y la de los sucesivos sobretonos de una cuerda que vibra guardan una relación de 1/2, 1/3, 1/4, etc 

En torno a 1350 Nicole Oresme demostró que la serie armónica es divergente, esto es, su suma crece sin parar, no tiene límite.

Esta divergencia de la serie armónica pese a que 1/n tiende a cero a medida que n aumenta da lugar a resultados curiosos como los siguientes:

El gusano y el hilo

Josep Maria Albaigès en su divertido libro ¿Se atreve Vd. con ellos? propone 101 divertidos problemas entre los que se encuentra el que transcribo a continuación

“Imaginemos un hilo extendido rectilíneamente, de 1 km de longitud, y, en un extremo, un caracol puntual que empieza a recorrerlo a la velocidad constante de 1 mm por segundo. El hilo tiene una curiosa propiedad: al cabo de un segundo de haber empezado su recorrido el caracol, se estira instantáneamente 1 km (es decir, que al terminar el primer segundo se alarga elásticamente, de forma instantánea, hasta medir 2 km). Al terminar el 2º segundo pasa a 3 km, y así sucesivamente: a los n segundos medirá n + 1 km.

Y he aquí la pregunta, que puede sorprender: ¿llegará el caracol al final del hilo? Y, para las personas con conocimientos sólidos de análisis matemático: ¿cuánto tiempo, si es que llega al final, invertirá en ello?”

Dejo al lector que trate de deducir la respuesta a la primera pregunta. Aunque a estas alturas por lo anteriormente dicho ya la habrá adivinado.

Encontrar la respuesta a la segunda pregunta requiere como Albaigès  comenta haber realizado estudios de análisis.

Otro interesante problema en el que aparece la serie armónica es el siguiente:

La pila de libros

Si tenemos un libro, de longitud L, sobresaliendo en el borde de una mesa, en el caso límite es posible que el extremo más alejado del mismo sobresalga L/2 de la mesa.
¿Si disponemos de dos libros idénticos se puede conseguir que el punto mas alejado de la mesa esté a una distancia mayor que L/2?

La respuesta se puede deducir fácilmente si se tiene en cuenta que la condición de equilibrio es que la vertical que pasa por el centro de gravedad del conjunto pase justamente por el borde de la mesa. En el segundo caso se consigue una distancia de 0,75L

¿Cuál es la máxima distancia que se puede conseguir entre el borde de un libro y la mesa, si se dispone de libros suficientes?

Bloques Apilados.
Autor: cmglee, Anonimski.
CC BY-SA 4.0

Como uno se puede imaginar después de lo ya dicho, en la solución del problema aparece la serie armónica y su divergencia por lo que no hay límite para esa distancia. Con un número suficiente de libros, y eso si, una mesa muy resistente, podemos alejarnos la distancia que queramos.

Un análisis del problema se puede ver en Mathworld

Para saber más

La serie armónica en la Wikipedia

Albaigès, J.M., 1981. ¿Se atreve Vd con ellos? 101 Apasionantes Problemas. Barcelona: Marcombo Boixareu Editores

Darling David. 2004. The Universal Book of Mathematics. John Wiley & Sons, Inc.

Ladrón de Julios: encendiendo un led con una pila gastada

Una pila de 1,5 V, de las que se utilizan en dispositivos electrónicos pequeños, de tipo AA o AAA, no permite normalmente encender un led ya que casi todos necesitan tensiones superior a 2 V. Sin embargo, si utilizamos de intermediario entre pila y led un circuito conocido como Ladrón de Julios, podremos encender no uno sino muchos ledes, incluso aunque la pila esté gastada.

El experimento

Material necesario

  • 1 toroide de ferrita (valen muchos tipos)
  • 1 resistencia 1 kΩ (vale de 0,5 kΩ a 2 kΩ)
  • Unos cuantos ledes de distintos colores.
  • 1 transistor PN2222A (hay muchas alternativas posibles)
  • Cables para las conexiones y para el bobinado sobre el toroide de ferrita.
  • 1 pila AA o AAA de 1,5 V gastada y otra sin gastar para el control.
  • 1 placa de pruebas (u otra forma alternativa de hacer las conexiones)
Material para montar un Ladrón de Julios
Material para montar un Ladrón de Julios

¿Cómo se hace?

Forma de conectar los elementos del ladón de julios
Forma de conectar los elementos del ladrón de julios

A tener en cuenta

toroide con 2 bobinados
toroide con 2 bobinados
  • En el toroide hay dos bobinas superpuestas. Para crear las bobinas se usa hilo de cobre esmaltado, como el que se ve en la fotografía del material, o hilo forrado. Para un toroide como el de la foto hacen falta dos trozos de 50 cm. Una vez bobinados, si se usa hilo de cobre esmaltado, hay que lijar los extremos para eliminar el esmalte
toroide
toroide
  • Las dimensiones aproximadas del toroide utilizado son: diámetro exterior 13 mm, diámetro interior 7 mm y altura 5 mm.
  • Un portapilas o unos cables con imanes en los extremos facilitan la conexión de la pila.
  • Si se usa un transistor pnp hay que invertir la polaridad de pila y led.
  • Los ledes están conectados en serie.

¿Qué sucede?

Esquema de ladrón de julios
Esquema de ladrón de julios

Si un dispositivo alimentado por pilas deja de funcionar debido a que las pilas están gastadas no significa que estas no tengan todavía energía disponible, lo que suele significar es que la tensión que suministran las pilas ha bajado de un cierto límite que el dispositivo necesita.
El ladrón de julios es un circuito oscilante que funciona como amplificador de tensión. Transforma una tensión continua pequeña en una serie de pulsos de alta frecuencia a una tensión mayor. Consigue así aprovechar mucha energía de una pila aparentemente sin ella.
En la figura  se representa el esquema de un ladrón de julios.
En una parte del ciclo la energía de la pila se almacena en la bobina B2. En esta parte del ciclo el led está apagado. En la otra parte del ciclo la energía almacenada en la bobina B2 se disipa a través del led encendiéndolo. El transistor actúa como conmutador dando lugar a la oscilación del circuito. [En el dibujo del circuito y en el video la resistencia está entre la bobina B1 y la base mientras que en el esquema está entre B1 y la pila. Ambos circuitos son equivalentes]

Entrando un poco más en detalle:

    1. Inicialmente el transistor está en corte (al no haber corriente de base, se comporta como un interruptor abierto), no circula corriente entre colector y emisor.
    2. La pila hace que comience a pasar una pequeña corriente a través de la resistencia que, después de atravesar la bobina B1, llega a la base activando el transistor y permitiendo el paso de corriente entre colector y emisor.
    3. A medida que la corriente aumenta en la bobina B2, se induce corriente en la bobina B1 que refuerza la corriente de base abriendo más el paso a la corriente colector-emisor.
    4. El paso 3 se repite hasta que el transistor está en saturación y la corriente que atraviesa la bobina 2 y el canal colector-emisor ha llegado al máximo. En este momento hay una gran energía almacenada en el campo magnético de la bobina B2.
    5. Como la corriente no varía en la bobina B2, desaparece el efecto de inducción sobre la bobina 1 y comienza a descender la corriente que llega a la base.
    6. Al disminuir la corriente de base, el canal colector-emisor comienza a cerrarse produciendo una disminución de corriente en la bobina B2.
    7. La caída de corriente en la bobina B2 provoca que en la bobina B1 la corriente disminuya también.
    8. La repetición de los pasos 6 y 7 pone al transistor en corte.
    9. Con el transistor en corte, la energía magnética que queda almacenada en la bobina B2 provoca un pulso de corriente a través del led.
    10. Una vez que la energía de la bobina se ha disipado, todo comienza de nuevo.

Los puntos que aparecen en el símbolo de las bobinas en el esquema del circuito, indican puntos con misma polaridad instantánea.

En un ladrón de julios típico la frecuencia de funcionamiento es del orden de 50 kHz mientras que la tensión de salida puede estar en torno a los 30 V.

Un poco de historia

ladron de julios original
ladrón de julios original

En el número de noviembre de 1999 la revista Everyday Practical Electronics publicó un articulo firmado por Z. Kaparnik con el título One Volt LED-A Bright Light. Presentaba tres circuitos que permitían encender un led con una fuente de tensión mucho menor que la necesaria para encenderlo directamente. El circuito más simple de los tres presentados es el que aparece en la figura.

En palabras de Kaparnik:

In the Micro-torch circuit Fig.1a, transistor TR1, transformer T1 and resistor R1 form a current-controlled switching oscillator. Each time TR1 turns off, the collapsing magnetic field in T1 generates a 30V (off-load) positive pulse at TR1’s collector (c). This, in series with the supply, is fed directly to the LED.
Switching occurs at a very high frequency and with a low duty cycle, which results in an average LED current of about 18mA, sufficient to illuminate most LEDs.

Más información

Créditos

El primer juego de ordenador de la historia

El Ajedrecista de Leonardo Torres Quevedo, presentado en 1912, está considerado como el primer juego de ordenador de la historia. En esta entrada se puede jugar contra un programa que implementa el mismo algoritmo usado en El Ajedrecista.

El autor
Leonardo Torres Quevedo por Eulogia Merle MUNCYT
Leonardo Torres Quevedo por Eulogia Merle MUNCYT

Leonardo Torres Quevedo (1852-1936) fue un ingeniero e inventor español nacido en Santa Cruz de Iguña (Cantabria).
Dedicó la mayor parte de su vida a diseñar y elaborar una amplia variedad de inventos geniales. Por citar alguno de los que han tenido más repercusión mediática:
El telekino: un mando a distancia que utilizaba ondas electromagnéticas. El 7 de noviembre de 1905, en el puerto de Bilbao, con la asistencia del rey Alfonso XIII y una gran multitud, demostró su funcionamiento gobernando un bote desde la orilla.
Transbordadores: El Spanish Aerocar es un transbordador que cruza las cataratas del Niagara. Inaugurado en 1916, sigue en funcionamiento en la actualidad.
Ordenadores Analógicos. En estos dispositivos, un proceso matemático se transforma en un proceso físico representando los números mediante magnitudes físicas como tensiones o intensidades eléctricas, rotaciones en un eje, etc. Torres Quevedo construyó varias máquinas de este tipo, por ejemplo una que resolvía ecuaciones de segundo grado con coeficientes complejos.

En su artículo Ensayos de automática. Su definición . Extensión teórica de sus aplicaciones publicado en 1914 en la Revista de la Real Academia de Ciencias, presenta muchas de sus ideas sobre la realización de los autómatas. Se incluye el diseño completo de una máquina capaz de calcular a(y-z)^2 para un conjunto de valores de las variables presentes, lo que implica dispositivos electromecánicos para almacenar dígitos decimales, realizar operaciones aritméticas utilizando tablas o comparar el valor de dos cantidades. Incluso aparece por primera vez la idea de una aritmética usando coma flotante. (Ver el artículo de Randell, Brian de 1992 basado en una conferencia dada en el MIT)

El primer juego de ordenador
El Ajedrecista (2º modelo)
El Ajedrecista (2º modelo)

En 1912 Torres Quevedo presentó un autómata que jugaba al ajedrez: El Ajedrecista. Considerado el primer juego de ordenador de la historia, ganaba de forma inexorable un final de rey y torre contra rey. El autómata movía la torre y el rey blancos y el humano el rey negro.
En esta primera versión el tablero estaba dispuesto en posición vertical y el autómata detectaba los movimientos del rey blanco por unos contactos que las piezas tenían en su base. Las piezas blancas se movían usando brazos articulados. En 1920 y con la colaboración de su hijo Gonzalo diseño una versión mejorada. El tablero estaba ahora en posición horizontal, y las piezas se movían mediante electro-imanes ocultos bajo el mismo. Si detectaba que el jugador hacía trampas se encendía una luz roja y a la tercera dejaba de jugar. En un gramófono, que se ve en la fotografía en la parte superior izquierda, se oía “Jaque al rey” en cada jaque de la torre y “Mate” al final de la partida.

La posición inicial de las piezas blancas era rey en a8 y torre en h7. El jugador humano podía situar el rey negro en cualquier fila inferior a la séptima, con la única condición de que no se pusiese en jaque. Continuar leyendo “El primer juego de ordenador de la historia”