Rompecabezas geométricos difíciles*

Se presentan tres rompecabezas en los que una idea feliz permite una resolución inmediata de los mismos

Una hormiga viajera
hormiga viajera
hormiga viajera

Una hormiga que está en el centro de la cara superior de un cubo quiere ir a un vértice de la cara inferior como se ve en la figura. Si la arista del cubo mide L = 1 ¿qué distancia mínima debe recorrer?

Una serie infinita

En un triángulo equilátero de lado L = 1 se inscribe una sucesión infinita de círculos, cada uno sobre el anterior, como se ve en la figura

Serie infinita
Serie infinita

¿Cuanto vale la suma de los diámetros de todos los círculos?

\sum\limits_{d=1}^{\infty }{{d}_{i}} = {d}_{1}+{d}_{2}+{d}_{3} + \dots = ?

Geometría euclídea

En un cuadrante de circunferencia hay inscrito un rectángulo como se ve en la figura

geometría euclídea
geometría euclídea

Determina la longitud de la diagonal AC

*Tiempo límite para resolver los 3 rompecabezas = 5 minutos

ver soluciones

¿Es posible superar la velocidad de la luz?

La respuesta a la pregunta que da título a esta entrada es sorprendentemente, SI. ¿Es una broma? No, vamos a demostrarlo.

En la figura se ve una barra inclinada cayendo, con una velocidad constante vc, con respecto a otro objeto, dibujado horizontal, en reposo.

superlumínico

A medida que la barra cae, el punto de intersección (vértice del ángulo que forman) con el objeto en reposo se mueve hacia la izquierda.

En la figura se muestra la barra que cae en dos instantes t1 y t2. En el tiempo que media entre t1 y t2 la barra cae una distancia a y el punto de intersección avanza una distancia b. En la figura a y b son los catetos del triángulo rectángulo dibujado en verde.

¿A qué velocidad se mueve el punto de intersección?

La velocidad de caída de la barra es

{v}_{c}=\frac{a}{{t}_{2}-{t}_{1}}

y la velocidad del punto de intersección

{v}_{i}=\frac{b}{{t}_{2}-{t}_{1}}

Si dividimos miembro a miembro las expresiones anteriores

\frac{{v}_{c}}{{v}_{i}}=\frac{a}{b}

y tenemos en cuenta que

\frac{a}{b} =\tan{\alpha}

podemos expresar la velocidad del punto de intersección, vi, en función de la velocidad de caída, vc, y del ángulo, α, que forman ambos objetos,

{v}_{i}=\frac{{v}_{c}}{\tan{\alpha}}

Si el ángulo es por ejemplo α = 1º y la velocidad de caída vc es 10000 km/s

{v}_{i}=\frac{10000}{\tan{1}} = 572900\text{ km/s}

La velocidad con que se mueve el punto de intersección supera la velocidad de la luz c = 300000 km/s

¿Algún problema con la Teoría de la Relatividad?

No hay ningún problema siempre que lo que se mueva sea una intersección. Si habría problema si lo que se moviese a una velocidad superlumínica fuese una partícula o un objeto como la barra que cae.
A medida que la velocidad, v, de un objeto aumenta con respecto a otro, su masa, m, medida desde un observador en este último crece según la siguiente ecuación

{m}=\frac{{m}_{0}}{{\sqrt{1-\frac{v^2}{c^2}}}}

c representa la velocidad de la luz y m0 la masa medida en reposo.
De la ecuación anterior se deduce que no se puede alcanzar la velocidad de la luz. A medida que v se acerca a c cuesta cada vez más acelerar al objeto ya que su masa crece sin límite.

Aunque sea perfectamente posible que la intersección, de nuestro ejemplo, se mueva más deprisa que la luz, no sería posible utilizar este hecho para transmitir información a una velocidad superior a c.

Más información

En esta entrada de la Wikipedia hay otros ejemplos de viajes superlumínicos.

Langue, V. N. 2022. Paradojas, sofismas y problemas recreativos de física. (Moscú: URSS)

¿Qué tiene que ver el número pi con el número de supervivientes?

De Morgan en A Budget of Paradoxes cuenta la siguiente anécdota:

Augustus De Morgan
Augustus De Morgan

Tuve un amigo interesado en todo lo relacionado con la mortalidad, seguros de vida, etc. Un día, explicándole cómo debería determinarse la probabilidad de que el número de supervivientes de un grupo de personas, al cabo de un cierto tiempo se encuentre entre ciertos limites, llegué, por supuesto, a la introducción de pi, que solo pude describir como la relación entre la circunferencia de un círculo y su diámetro. -¡Oh, mi querido amigo! Eso debe ser un error, ¿qué tiene que ver un círculo con el número de vivos?

Definición habitual del número pi
Definición habitual del número pi

La extrañeza mostrada por el amigo de De Morgan la mostraría mucha gente ya que habitualmente se asocia el número π exclusivamente con la  relación que existe entre la longitud de la circunferencia y su diámetro. El número π  podría definirse de otras muchas maneras ya que aparece en matemáticas en situaciones sorprendentemente diversas. A continuación se muestran algunas de ellas:

Continuar leyendo “¿Qué tiene que ver el número pi con el número de supervivientes?”

¿Hay algún cifrado indescifrable?

Joseph Mauborgne coinventor del cuaderno de un solo uso
Joseph Mauborgne coinventor del cuaderno de un solo uso

La respuesta a la pregunta que da título a esta entrada es: sí, el cuaderno de un solo uso. El sistema lo inventaron en 1914 Joseph Oswald Mauborgne, militar de la armada norteamericana, y Gilbert Sandford Vernam, empleado de la American Telephone and Telegraph Company.

En 1949 Claude Shannon, un matemático e ingeniero norteamericano, considerado el padre de la teoría de la información, publicó Communication Theory of Secrecy Systems. En este trabajo demostró que si se cifra un texto usando un cuaderno de un solo uso, del texto cifrado no se puede obtener NINGUNA información sobre el texto original.

Continuar leyendo “¿Hay algún cifrado indescifrable?”

Nitinol: un material con memoria de forma

El Nitinol es una aleación de níquel y titanio que tiene memoria de forma. Si lo deformamos plásticamente y posteriormente lo calentamos recuperará su forma original. Mediante calentamiento bajo tensión es posible darle una nueva forma.

Un material con memoria de forma puede recuperar su forma después de deformarlo de una manera aparentemente irreversible. En los años treinta del pasado siglo se descubrieron las primeras aleaciones con este comportamiento y veinte años más tarde, en los cincuenta, se encontró una explicación a lo que sucedía

Sus aplicaciones son muy diversas y en ámbitos muy dispares, por ej.: antenas para satélites que se transportan plegadas y llegado el momento se despliegan adoptando la forma predefinida, válvulas, en circuitos de seguridad, que se cierran o abren en función de la temperatura, piezas deformadas de objetos sometidos a tensión, que recuperan su forma mediante el paso de una corriente eléctrica.

El Nitinol

Uno de los materiales más populares que presenta memoria de forma es una aleación de Ni y Ti conocida como Nitinol. Su nombre es un acrónimo que incluye además de los dos metales constituyentes, el laboratorio de armamento de la armada estadounidense donde se descubrió :
Nickel Titanium Naval Ordnance Laboratory.
Su descubridor fué William J. Buehler un ingeniero metalúrgico que trabajaba en el Naval Ordnace Laboratory  preparando aleaciones para el cono delantero de los misiles Polaris.

Los materiales que buscaba debían soportar las drásticas condiciones que se producen en la reentrada de los misiles en la atmósfera terrestre. En 1959 centró su búsqueda en una aleación de níquel y titanio en proporciones equimolares a la que donomino Nitinol. Descubrió accidentalmente, al caérsele una muestra, que dependiendo de la temperatura de la muestra, el sonido que producía al chocar con el suelo del laboratorio era diferente. Esto sugería un cambio en la estructura de la aleación en función de la temperatura. En los primeros meses de 1960 Buehler probaba la resistencia a la fatiga de la aleación. Usando tiras de Nitinol las doblaba en una especie de acordeón y lo estiraba y doblaba a temperatura ambiente sin que se rompiera. En 1961 Buehler no pudiendo asistir a una de las reuniones, en las que se analizaba la marcha de los proyectos en desarrollo, envío a uno de sus asistentes Raymond C.Wiley a la misma. En la reunión Wiley mostró la pieza en forma de acordeón, que fue pasando de mano en mano entre los asistentes, mientras comprobaban sus propiedades mecánicas. Uno de los presentes David S. Muzzey, fumador de pipa, aplicó calor a la pieza usando su mechero. Ante la mirada de los asombrados asistentes, la muestra de Nitinol se estiró adoptando un forma lineal y exhibiendo de esta manera su sorprendente memoria de forma.

En el vídeo que sigue, un alambre de Nitinol deformado tras ser enrollarlo en una pieza cilíndrica, recupera su forma lineal al calentarlo.

¿Por qué tiene memoria de forma?

Continuar leyendo “Nitinol: un material con memoria de forma”