Mathematical Puzzles & Diversions

Gardner, M. Mathematical Puzzles and DiversionsMathematical Puzzles & Diversions.  Martin Gardner. Simon and Schuster, Nueva York, 1959.

Desde 1956 a 1981 Martin Gardner estuvo al cargo de la sección “Mathematical Games” de la revista Scientific American. [Publicada en castellano desde 1976 con el nombre Investigación y Ciencia]. Todos los artículos que escribió en esta sección se recogieron posteriormente en 15 libros. Mathematical Puzzles & Diversions es el primero de ellos.

Se publicó posteriormente con otros nombres:

  • Hexaflexagons and Other Mathematical Diversions. University Of Chicago Press, 1988.
  • Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi. Cambridge. University Press, 2008.

Contenido:

1.  Hexaflexagons
2.  Magic with a Matrix
3.  Nine Problems
4.  Ticktacktoe
5.  Probability Paradoxes
6.  The Icosian Game and the Tower of Hanoi
7.  Curious Topological Models
8.  The Game of Hex
9.  Sam Loyd: America’s Greatest Puzzlist
10. Mathematical Card Tricks
11. Memorizing Numbers
12. Nine More Problems
13. Polyominoes
14. Fallacies
15. Nim and Tac Tix
16. Left or Right?

Referencias:

Ciencia recreativa

Estalella, J. Ciencia RecreativaCiencia recreativa. José Estalella. Ayuntamiento de Barcelona. Dirección de Servicios Editoriales, Barcelona, 2007.

Ciencia recreativa, cuyo subtítulo es, enigmas y problemas, observaciones y experimentos, trabajos de habilidad y paciencia, es un facsímil de la segunda edición del libro de José Estalella, publicado por primera vez en 1918. Prácticamente sin modificaciones se ha reeditado en múltiples ocasiones, la última en 1979. La edición que aquí se reseña viene acompañada por un segundo volumen denominado Ciencia recreativa comentada, que recoge interesantes comentarios sobre las actividades propuestas en el libro escritos por 20 profesores de las universidades de Girona, Politécnica de Cataluña y Murcia) .

Magníficamente ilustrado con 882 grabados, el libro recoge 991 actividades de ciencia recreativa, la mayoría de las cuales se pueden realizar con materiales muy sencillos.

Contenido
1. Enigmas y problemas
1.1.  Cuestiones de Aritmética
1.2. Cuestiones geométricas
1.3. Cuestiones varias
2. Observaciones y experimentos
2.1. Física
2.1.1. Mecánica y gravedad
2.1.2. El sonido
2.1.3. La luz
2.1.4. El calor
2.1.5. Fenómenos capilares
2.1.6. Magnetismo y electricidad
2.2. Química
2.3. Cuestiones de geografía e historia natural
3. Trabajos de habilidad y paciencia
3.1. Dibujos, fotografías y reproducciones análogas
3.2. Construcciones de papel
3.3. En el campo

Química de ácidos y bases

Un poco de información previa
¿Qué son ácidos y bases ?

Los ácidos y bases son dos tipos de sustancias que de una manera sencilla se pueden caracterizar por las propiedades que manifiestan.

Los ácidos :

  • tienen un sabor ácido
  • dan un color característico a los indicadores (ver más abajo)
  • reaccionan con los metales liberando hidrógeno
  • reaccionan con las bases en proceso denominado neutralización en el que ambos pierden sus características.

Las bases :

  • tienen un sabor amargo
  • dan un color característico a los indicadores (distinto al de los ácidos)
  • tienen un tacto jabonoso.

En la tabla que sigue aparecen algunos ácidos y bases corrientes :

ácidos y bases caseros
ácido o base donde se encuentra
ácido acético vinagre
ácido acetil salicílico aspirina
ácido ascórbico vitamina C
ácido cítrico zumo de cítricos
ácido clorhídrico sal fumante para limpieza, jugos gástricos
ácido sulfúrico baterías de coches
amoníaco (base) limpiadores caseros
hidróxido de magnesio (base) leche de magnesia (laxante y antiácido)

NOTA DE SEGURIDAD

NO se debe probar ningún ácido o base a menos que se tenga la absoluta certeza de que es inocuo. Algunos ácidos pueden producir quemaduras muy graves.
Es peligroso incluso comprobar el tacto jabonoso de algunas bases. Pueden producir quemaduras.

¿Qué es el pH ?

Los químicos usan el pH para indicar de forma precisa la acidez o basicidad de una sustancia. Normalmente oscila entre los valores de 0 (más ácido) y 14 (más básico). En la tabla siguiente aparece el valor del pH para algunas sustancias comunes.

pH que presentan algunas sustancias corrientes
sustancia pH sustancia pH
jugos gástricos 2,0 amoníaco casero 11,5
limones 2,3 leche de magnesia 10,5
vinagre 2,9 pasta de dientes 9,9
refrescos 3,0 disolución saturada de
bicarbonato sódico
8,4
vino 3,5 agua de mar 8,0
naranjas 3,5 huevos frescos 7,8
tomates 4,2 sangre humana 7,4
lluvia ácida 5,6 saliva (al comer) 7,2
orina humana 6,0 agua pura 7,0
leche de vaca 6,4 saliva (reposo) 6,6

¿Qué es un indicador ?

Los indicadores son colorantes orgánicos, que cambian de color según estén en presencia de una sustancia ácida, o básica.

lombarda
lombarda

Fabricación casera de un indicador

Las lombardas, parecidas a repollos y de color violeta, contienen en sus hojas un indicador que pertenece a un tipo de sustancias orgánicas denominadas antocianinas.
Para extraerlo :

  • Corta unas hojas de lombarda (cuanto más oscuras mejor)
  • Cuécelas en un recipiente con un poco de agua durante al menos 10 minutos
  • Retira el recipiente del fuego y dejarlo enfriar
  • Filtra el líquido (Se puede hacer con un trozo de tela vieja)
  • Ya tienes el indicador (El líquido filtrado)

Las características del indicador obtenido son :

indicador extraído de la lombarda
color que adquiere medio en el que está
rosa o rojo ácido
azul oscuro neutro
verde básico

NOTA DE SEGURIDAD

El amoníaco es muy irritante. Debe Identifica adecuadamente el recipiente que lo contiene. NO debe probarse y NO debe dejarse en un sitio donde alguien pudiera probarlo por error.

Test de respiración (para gastar una broma)

Dale a alguien un vaso que contiene un poco de agua con extracto de lombarda y unas gotas de amoniaco casero y pídele que sople a través de una pajita de refresco. Puedes presentarlo como un test de alcohol, mal aliento, etc. La disolución pasará de color verde esmeralda a azul oscuro. Si ahora le añades vinagre, la disolución adquirirá un color rojo.

Al soplar expulsamos dióxido de carbono (CO2) que en contacto con el agua forma ácido carbónico (H2CO3). Este ácido formado, neutraliza el amoníaco que contiene la disolución. Al añadir vinagre la solución adquiere un pH ácido.

Cómo generar lluvia ácida

Impregna una tira de papel de cocina en una disolución del extracto de lombarda. Acerca una cerilla inmediatamente después de encenderla. Se observa que aparece un punto rojo (ácido) en la tira de papel.
¿A qué se debe ? ¿Puede ser debido al dióxido de carbono (CO2) generado en la combustión? No, la disolución formada (ácido carbónico) no es suficientemente ácida como para producir el color rojo. (Se puede comprobar repitiendo el
experimento pero dejando arder la cerilla un poco antes de acercarla al papel). La causa de la aparición del color rojo está en el dióxido de azufre (SO2) que se forma cuando la cerilla se inflama.
Esto se debe a la presencia de azufre (S) añadido, entre otros productos, a la cabeza de la cerilla, para favorecer la ignición.

El dióxido de azufre en contacto con el agua presente en la tira de papel forma ácido sulfuroso (H2SO3) que es más ácido que el ácido carbónico.

En la combustión de algunos derivados del petróleo se produce dióxido de azufre que pasa a la atmósfera. Al llover y entrar en contacto con el agua, se forma el ácido sulfuroso , uno de los responsables de la lluvia ácida.


Más información en SNYDER, C.H., 1995.The Extraordinary Chemistry of Ordinary Things. (John Wiley: New York)
La imagen de la lombarda esta modificada de una original de Rick Heath. Licencia Creative Commons Attribution 2.0 Generic license

Bunsen y Kirchhoff

Kirchhoff (izquierda) Bunsen (derecha)

Los nombres de Robert Wilhem Bunsen(1811-1899) y Gustav Robert Kirchhoff(1824- 1887) solo recuerdan actualmente a mucha gente un mechero (utilizado todavía en los laboratorios de química) y unas reglas referidas a los circuitos eléctricos. Sin embargo, la colaboración de estos dos científicos alemanes en Heilderberg fue fundamental para el desarrollo de la espectroscopia.

La espectroscopia se basa en que al calentar ciertas substancias, por ejemplo mediante una llama, emiten luz. Si la luz emitida se hace pasar a través de un prisma, se descompone en un conjunto de radiaciones denominado espectro.

Bunsen y Kirchhoff desarrollaron un aparato que se conoce como espectroscopio que permite observar espectros de diversas substancias.

En cierta ocasión mientras observaban, desde unos 80 km de distancia, un incendio en el puerto de Hamburgo, se les ocurrió hacer pasar por un prisma la luz que venía del incendio. Vieron una luz amarilla intensa como la que habían observado al quemar sodio. Pronto encontraron la explicación. Lo que estaba ardiendo era un almacén de salazones.

Si era posible deducir la presencia de sodio a distancia observando la luz de las llamas, también sería posible deducir la composición del Sol y de las estrellas analizando la luz que recibimos de ellas.

Después de varias semanas de intenso trabajo dieron a conocer sus resultados : el Sol está formado por substancias como las que hay en la Tierra.

Espectros

En la imagen1 se representan el espectro de la luz solar (I) y el de los elementos potasio (II), sodio (III), cesio (IV) y rubidio (V). Estos dos últimos elementos fueron descubiertos por Bunsen y Kirchhoff mediante el análisis de sus espectros.

¿Es una casualidad que la línea amarilla del espectro del sodio corresponda a una de las líneas negras que se ven en el espectro solar?

No, cuando la luz del Sol atraviesa su atmósfera, el sodio presente en ella absorbe precisamente la luz de color amarillo que vemos en su espectro (III).


1La imagen pertenece al libro Ganot, A. 1870. Tratado de física. (Librería de Rosa y Bouret: Paris)